UCID- 20539

POSSOL Poisson Equation Solver

William J. Orvis

August 1985

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

Price: Printed Copy \$; Microfiche \$4.50

Page Range	Domestic Price	Page Range	Domestic Price	
001-025	\$ 7.00	326-350	\$ 26.50	
026-050	8.50	351-375	28.00	
051-075	10.00	376-400	29.50	
076-100	11.50	401-426	31.00	
101-125	13.00	427-450	32.50	
126-150	14.50	451-475	34.00	
151-175	16.00	476-500	35.50	
176-200	17.50	501-525	37.00	
201-225	19.00	526-550	38.50	
226-250	20.50	551-575	40.00	
251-275	22.00	576-600	41.50	
276-300	23.50	601-up ¹		
301-325	25.00	•		

¹Add 1.50 for each additional 25 page increment, or portion thereof from 601 pages up.

POSSOL Poisson Equation Solver

by

William J. Orvis

ABSTRACT

POSSOL is a two-dimensional Poisson solver for problems with arbitrary non-uniform gridding in cartesian coordinates. Actually, it will solve the Helmholtz equation on an arbitrary, non-uniform grid on a rectangular domain with unmixed boundary conditions. The routine is similar to PWSCRT developed by Schwarztrauber and Sweet at the National Center for Atmospheric Research. The routine is also amenable to the capacitance matrix technique which can be used to solve problems with mixed boundary conditions.

INTRODUCTION

In 1975, Schwarztrauber and Sweet at the National Center for Atmospheric Research (NCAR) wrote a set of FORTRAN subroutines for solving the Helmholtz equation in two dimensions¹. These routines all use the Buneman variant of cyclic reduction to solve the standard, five point difference approximation in several different coordinate systems:

Routine	Coordinate system
PWSCRT	Cartesian
PWSPLR	Polar
PWSCYL	Cylindrical
PWSCSP	Spherical with axisymmetry
PWSSSP	Spherical on the unit sphere

All of these routines require a uniform mesh and unmixed boundary conditions. For my semiconductor device modeling work, I needed to solve the Poisson equation on a non-uniform mesh in cartesian coordinates. As a result, I have created the subroutine

POSSOL which is similar to PWSCRT, but allows a non-uniform mesh. I also needed to be able to have mixed boundary conditions on any side of the problem, but the routines listed above (including POSSOL) only allow one type of boundary condition on any one side. In order to handle more than one type of boundary condition on a side, I developed a form of the capacitance matrix technique around POSSOL.

METHOD

POSSOL

The five routines mentioned above solve the Helmholtz equation in two dimensions.

$$\nabla^2 \mathbf{U} \cdot \lambda \mathbf{U} = \mathbf{f} \tag{1}$$

using a five point difference approximation. Four of the five subroutines (PWSCRT, PWSPLR, PWSCYL and PWSSSP) solve this approximation with the routine POIS, which solves the following linear system of equations,

$$A(i)^*U(i-1,j) + B(i)^*U(i,j) + C(i)^*U(i+1,j) + U(i,j-1) - 2.^*U(i,j) + U(i,j+1) = f(i,j).$$
 (2)

where A, B and C are constant coefficient arrays.

The other routine (PWSCSP) uses the routine BLKTRI which solves the following slightly different set of linear equations,

$$AN(j)*U(i,j-1) + AM(i)*U(i-1,j) + (BN(j) + BM(i)) * U(i,j) +$$

$$CN(j)*U(i,j+1) + CM(i)*U(i+1,j) = \Gamma(i,j).$$
(3)

where AN, AM, BN, BM, CN and CM are constant, coefficient arrays. In both cases, i ranges from 1 to m+1 and j ranges from 1 to n+1, where m and n are the number of panels in the x and y directions (i.e. there are m+1 and n+1 grid points in the x and y directions respectively).

The routine PWSCRT uses the routine POIS to solve the Helmholtz equation in cartesian coordinates on a uniform mesh. The x coordinate ranges from A to B and the y coordinate ranges from C to D. The Helmholtz equation in two-dimensional cartesian coordinates is,

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \lambda U = f$$
(4)

This equation is discretized on the uniform mesh:

$$\Delta x = (B - A)/m$$
$$\Delta y = (D - C)/n$$

85.

$$(1/\Delta x) * (U(i+1,j) - 2*U(i,j) + U(i-1,j)) + (1/\Delta y) * (U(i,i+1) - 2*U(i,i) + U(i,i-1)) + \lambda * U(i,i) = F(i,j) (5)$$

These equations can easily be put into the form required by POIS (equation 2 above) by multiplying through with Δy .

However, for my problem, Δx and Δy are functions of x and y respectively, which results in a much more complicated discrete equation. The non-uniform mesh is devfined with:

$$\Delta x^{+} = x(i+1) - x(i)$$
 $\Delta x^{-} = x(i) - x(i-1)$
 $\Delta x = (\Delta x^{+} + \Delta x^{-})/2$
 $\Delta y^{+} = y(j+1) - y(j)$
 $\Delta y^{-} = y(j) - y(j-1)$
 $\Delta y = (\Delta y^{+} + \Delta y^{-})/2$

and the discrete equation is:

Now, this equation can not be put into a form that POIS can use, but is already in a form that can be solved by BLKTRI. The constants in equation 3 are defined with,

AM(i) =
$$1/(\Delta x^- * \Delta x)$$

BM(i) = $-2/(\Delta x^+ * \Delta x^-) + \lambda$
CM(i) = $1/(\Delta x^+ * \Delta x)$

AN(j) =
$$1/(\Delta y^{-} + \Delta y)$$

BN(j) = $-2/(\Delta y^{+} + \Delta y^{-})$
CN(j) = $1/(\Delta y^{+} + \Delta y)$ (7)

Note that λ could have been added to BM or BN with equal results.

Now, the boundary conditions need to be added by modifying the right or left sides of those equations, defined by equation 3, that involve grid points along the boundaries. This must be done because BLKTRI is only an equation solver, and does not autoimatically insert boundary conditions. There are three possible types of boundary conditions that can be used with this routine: fixed, derivative or periodic. For example, consider the one-dimensional equation with $U(i)=U_0$ for i=0. In this problem, the equation at i=1 is:

$$AN(1)*U_0 + BN(1)*U(1) + CN(1)*U(2) = F(1)$$
 (8)

which we reorganize to:

$$BN(1)*U(1) + CN(1)*U(2) - F(1) - AN(1)*U_0$$
(9)

We then redefine AN(1) and F(1),

$$F(1) = F(1) - AN(1) * U_0$$

 $AN(1) = 0$ (10)

before calling BLKTRI. Note that they must be redefined in the order shown above.

For derivative boundary conditions, at i = 1, of the form:

where BDA is the value of the derivative. We first finite difference equation (11) at the point i = 1,

$$(U(2) - U(0))/(2^+\Delta_X) = BDA$$
 (12)

Next, we solve it for U(0) and insert it into the problem equation (a one-dimensional version of equation 3) at i = 1,

$$AN(1)^{+}(U(2)-2^{+}\triangle x^{+}BDA) + BN(1)^{+}U(1) + CN(1)^{+}U(2) = F(1)$$
(13)

Equation 13 is then reorganized into.

$$BN(1)+U(1)+(AN(1)+CN(1))+U(2)=F(1)+2+\Delta x+BDA+AN(1)$$
 (14)

and, as before, we then redefine the terms CN(1), F(1), and AN(1) (in that order):

$$CN(1) = CN(1) + AN(1)$$

 $F(1) = F(1) + 2* \Delta x*BDA*AN(1)$
 $AN(1) = 0$ (15)

before calling BLKTRI.

Finally, for periodic boundary conditions, we assume that U(m) = U(0), U(m+1) = U(1) etc., in which case, AN, BN and CN take on their normal values (equation 7).

For the two-dimensional problems solved by POSSOL, the methods described above are applied to all of the grid points on the four boundaries. In which case, U_0 and BDA become arrays, with one value for each grid point along the boundary i=0. Six other arrays are defined to hold the values along the other three boundaries.

There is one more situation that must be considered for a general purpose equation solver, and that is the case where λ is zero and the boundary conditions are all either derivative or periodic. In this case a solution may not exist, and if one does, it is not unique (i.e. if U is a solution, U + U₀ is also a solution for any constant U₀). If a solution does exist, then the calling program must determine what constant, if any, must be added to the solution. As to the existance of a solution, the following paragraphs will explain how POSSOL treats that problem.

Consider the matrix equation that represents the discrete form of some equation being solved with POSSOL:

$$\mathbf{A}\mathbf{U} = \mathbf{f}$$
 (16)

where A is a matrix and U and f are vectors. While the original equation from which this set of discrete equations was formed may have had a solution, the process of finite differencing it, plus round-off error may have resulted in a set of equations with no possible solution. In their report, Swarztrauber and Sweet describe a way to correct this situation. They show that equation (16) has a solution if and only if,

$$\mathbf{h}^{\mathbf{t}}\mathbf{f}=\mathbf{0} \tag{17}$$

for all h defined by,

$$\mathbf{A}^{\mathbf{t}}\mathbf{h} = \mathbf{0} \tag{18}$$

Using (17) and (18), we determine a perturbation to f in equation (16) that will insure that it has a solution,

$$\mathbf{p} = (\mathbf{h}^{\mathbf{t}} \mathbf{f} / \mathbf{h}^{\mathbf{t}} \mathbf{e}) \mathbf{e} \tag{19}$$

where e is the unit vector (1.1.1...).

We then create a new right hand side for equation 16,

$$g = f - p \tag{20}$$

where g is the new right hand side. Note that as long as the perturbation on f is small compared to f, the resulting solution from POSSOL will be correct. If the perturbation is large, then you will end up solving a completely different problem. This usually indicates that your original equation does not have a solution or that you have made an error while inputting it. Therefore, the value of the perturbation (p) should be checked after control is returned from POSSOL and compered with the values in the vector f. If p is large compared to f then the calling program should take appropriate action.

For a problem solved with POSSOL, h can be broken into an x part and a y part as,

$$\mathbf{h} - \mathbf{h}_{\mathbf{X}}^{\mathbf{t}} \, \mathbf{h}_{\mathbf{Y}} \tag{21}$$

Then, for either of these two components of h there are two possible combinations of boundary conditions: derivatives specified at both ends, or periodic. For derivative boundary conditions, the value of a component of h_X (or h_Y) can be determined from equation 18 to be .

$$\mathbf{h}_{\mathbf{x}}(\mathbf{k}) = (\mathbf{h}_{\mathbf{x}}(1)/\Delta \mathbf{x}_1)(\Delta \mathbf{x}_{\mathbf{k}-1} + \Delta \mathbf{x}_{\mathbf{k}})$$
 (22)

where.

$$\Delta x_k = x(k+1) - x(k)$$

the arguement of h_x refers to the grid point and $h_x(1)$ is arbitrary. This equation can be simplified by letting $h_x(1)$ equal Δx_1 and then inserting for Δx_{k-1} and Δx_k to give,

$$h_x(1) = x(2) - x(1)$$
 $h_x(kmax) = x(kmax) - x(kmax-1)$
 $h_x(k) = x(k+1) - x(k-1)$ (23)

where I and kmax are the grid points at the boundaries.

The second case has periodic boundary conditions, which gives a slightly different value for h_x . The general expression is,

$$h_x(k) = (h_x(kmax)/(\Delta x_{kmax-1} + \Delta x_{kmax}))(\Delta x_{k-1} + \Delta x_k)$$
 (24)

which can be reduced to.

$$h_x(1) = x(2) - x(1) + x(kmax) - x(kmax-1)$$

$$h_x(kmax) = h(1)$$

$$h_y(k) = x(k+1) - x(k-1)$$
(25)

The equations for y follow in exactly the same manner, with the final equation for h following from equation (21).

$$\mathbf{h}_{i,j} = \mathbf{h}_{\mathbf{x}}(i) \; \mathbf{h}_{\mathbf{y}}(j) \tag{26}$$

Appendix 1 contains the POSSOL interface and subroutine that prepares the problem for solution with BLKTRI.

TESTING

Appendix 2 contains an example problem used to test POSSOL. First, a non-linear grid is mapped onto a rectangular domain. Then, the equation:

$$U = 0.5 + \sin(2\pi \pi x/x len) + \sin(2\pi \pi y/y len)$$
 (27)

where xlen and ylen are the length and width of the problem, is inserted into equation 1 and a right hand side (f) is calculated at every point on the grid. This problem was then solved with POSSOL and the result compared with equation 27. The example shown in appendix 2 has fixed boundary conditions along the x boundaries and

derivative boundary conditions along the y boundaries. Several variations of this program were run to test various combinations of fixed, derivative and periodic boundary conditions, and the results were all nearly identical. The only cases where the results were not identical to equation 27 was where there were derivative and/or periodic boundary conditions on all sides, resulting in a problem without a unique solution. The solution returned by POSSOL was centered on zero rather then raised above zero by 0.5 as specified by equation 27. This is not an unexpected result, since any constant may be added to the equation, for this case, and still be a solution.

ACCURACY AND TIMING

The errors encountered in the test problems described above had maximum values of about 0.1% of the analytic solution. According to Schwarztrauber and Sweet, their equation solvers will all give much better accuracy (10⁻⁸% on a CDC 7600) for a problem where the derivatives are calculated with the same finite difference equations as are used by the solver rather than using analytic derivatives to calculate the right hand side of the equation. The difference is probably due to errors induced by discretizing the analytic equations.

Timing for POSSOL was not measured, however, it should be similar to that for the routine PWSCSP. Therefore, I have listed the accuracy and timing data for that routine (Table 1). This data is generated by defining random data on an m+1 by n+1 grid; inserting that into a finite differenced form of equation 1 to calculate the right hand side and then solving it with PWSCSP to get the original data back. 1

TABLE 1 Accuracy and timing for PWSCSP1

m	n	Execution Time (msec)	Max. Absolute Difference	
32	32	61	2.1*10 ⁻¹²	
64	64	284	1.7*10-11	
128	128	1341	1.1*10-10	

AVAILIBILITY

POSSOL will be available here at LLNL in MSSL (Math and Statistics Software Library). BLKTRI is available from the National Center For Atmospheric Research, Box 3000, Boulder, Colorado. It is also available here in MSSL.

CAPACITANCE MATRIX

The capacitance matrix method is a technique for separating a matrix problem into two parts, which can then be solved separately and then recombined in a manner that gives the correct solution to the original matrix.^{2,3} It can be used to allow problems with a mixture of fixed and derivative boundary conditions on an edge to be solved with a solver that only allows one type of boundary condition along an edge. I used it here to separate the discrete form of the Poisson equation with mixed boundary conditions into a part with unmixed boundary conditions that can be solved with POSSOL, and a small sub-matrix that can be solved with a simple matrix solver. These two matrix solutions are then recombined to give the solution to the original problem.

Consider the following matrix equation.

$$\mathbf{A}\mathbf{u} = \mathbf{f} \tag{28}$$

where A is a square m by m matrix and u and f are vectors of length m. Assume now that A consists of two parts: A_2 that is compatable with our matrix solver; and a small part A_1 that is not. We define A as,

$$\mathbf{A} - [\mathbf{A}_1 | \mathbf{A}_2] \tag{29}$$

Next we define a matrix B that is solvable with our matrix solver,

$$\mathbf{B} - [\mathbf{B}_1 | \mathbf{A}_2] \tag{30}$$

Note that B consists of the solveable part of A plus another part that has been adjusted to make the whole matrix equation solvable with the matrix solver. What this amounts to with the Poisson equation is taking a side of the problem that is part fixed and part derivative boundary conditions, and rewriting the boundary condition equations to

make the whole side derivative (or fixed) boundary conditions. For example, A₁ could consist of those boundary condition equations that describe the portion of the boundary with fixed boundary conditions, and A₂ would consist of the rest of the problem. B₁ would then be a new set of boundary condition equations describing the same boundary as A₁ but with derivative boundary conditions instead of fixed ones.

Using B, we define a new solution vector 0.

$$\mathbf{B}\mathbf{0} = \mathbf{f} \tag{31}$$

and a new matrix C (the capacitance matrix),

$$C = [A_1|0] B^{-1} [V_1|0]$$
 (32)

where W_1 is the identity matrix for A_1 . Note that the non-zero part of C (C_1) is generally much smaller than A. We define B with the equation,

$$\mathbf{C}_1 \mathbf{\beta} = \mathbf{f}_1 - \mathbf{A}_1 \mathbf{0} \tag{33}$$

where f_1 is that part of f that goes with A_1 , and then solve

$$\mathbf{B}\mathbf{u} = \mathbf{f} + [\mathbf{W}_1]\mathbf{0}]\mathbf{B} \tag{34}$$

to get u, the solution of the original equation.

ACCURACY AND TESTING

Appendix 3 contains an example of an implementation of this method with POSSOL as the main matrix solver. The problem solved is the same as that solved in appendix 2, but with a mixture of derivative and fixed boundary conditions along one side. This problem also requires the general matrix equation solver routine combination DEC/SOL to solve the small capacitance matrix equation (33). DEC does an L/U decomposition of the matrix and SOL back substitutes to get the final solution. The accuracy in this example problem was similar to that for POSSOL alone.

For a single solution, this method should take a little more than twice the amount of time as POSSOL to solve a problem, since it requires two solutions with POSSOL plus a solution of a small matrix with DEC/SOL. For problems that solve Poissons equation

several times on a fixed grid, the first POSSOL solution and the L/U decomposition of the matrix C can be done once and the results saved and reused for each additional solution of the problem. If a large number of solutions are performed, this should approximately cut the time per solution in half.

PEPEREICES

- 1. P. Schwarztrauber, R. Sweet, Efficient FORTRAN Subprograms for the Solution of Elliptic Partial Differential Equations, NCAR/TN-109+IA, National Center For Atmospheric Research, Boulder, CO, July, (1975).
- 2. Private conversation with Dick Hickman Oct (1982).
- 3. N. K. Madsen, An Application of a Capacitance Matrix Technique to Expand the Usefulness of a PDE Software Package, Technical Memorandum No. 77-3, Numerical Mathematics Group, Lawrence Livermore National Laboratory, Livermore, California, Feb., (1977).

APPENDIX 1

```
subroutine possol (intl,x,a,abdend,bda,bdb,y,n,nbdend,bdc,
1
                           bdd,elabda,f,idiaf,pertrb,ierror,w)
2
3 c
4 c
               ______
5 c
6 c *
          subroutine possol
7 c *
Bc
          william J. Orvis
                             3/12/85
9 c
          laurence liversore national laboratory
10 c
          liversore, california
11 c
12 c
        poisson equation solver with a non-uniform grid.
13 c
         this routine is an adaptation of the routine pescrt by:
        p. swarztrauber and r. sweet of near. It differs from that routine
14 c
        in that it allows a non-uniform grid to be used rather then a
15 c *
16 c *
        uniform grid, the routine biktri from noor is required.
        p. schearztrauber, r. seeet, "efficient fortran subprograms for the
17 c *
        solution of elliptic partial differential equations," near/tn-189+la,
19 c +
        national center for atmospheric research, boulder, co, july, (1975).
19 c *
     * if you have a uniform grid, pescrt will be faster.
28 c
21 c
22 c
23 c
24 c
25 c
26 c
27 c
             subroutine possol soives the standard five-point finite
         difference approximation to the helpholtz equation in cartesian
28 c
29 c
        coordinates:
39 c
31 c
              (d/dx)(d/dx)u + (d/dy)(d/dy)u + lambdatu = f(x,y).
32 c
33 c
         the arguments are defined as:
34 c
35 c
         ********
                                             * * * * * * * * * *
                                on input
36 c
37 c
         intl
38 c
            =8 initial call, quantities that depend on abdand and y are
39 c
               calculated and stored in a before doing a solution.
40 C
            =1 after the initial call, as long as abdend and y don't change
41 c
               between steps. this is about 58% faster then with intl=0.
42 c
43 c
44 c
           on m+1 dimensional array containing the x grid
45 c
           x(n+1) must be greater than x(1) the boundaries of the grid are:
46 c
           a=x(1) to b=x(n+1).
47 c
48 c
49 c
           the number of panels into which the interval (a,b) is
59 c
           subdivided. hence, there will be m+1 grid points in the
51 c
           x-direction given by x(i) for i = 1, 2, ..., n+1,
52 c
           m must be greater then 4.
53 c
54 c
         abdend
55 c
           indicates the tupe of boundary conditions at x = a and x = b.
```

```
56 c
57 c
           = 8 if the solution is periodic in x, i.e., u(1,j) = u(n+1,j).
58 c
           = 1 if the solution is specified at x = a and x = b.
59 c
           = 2 if the solution is specified at x = a and the derivative of
68 c
                the solution with respect to x is specified at x = b.
61 c
           = 3 if the derivative of the solution with respect to x is
62 c
                specified at x = a and x = b.
63 c
           = 4 if the derivative of the solution with respect to x is
64 c
                specified at x = a and the solution is specified at x = b.
65 c
66 c
         bda
67 c
           a one-disensional array of length n+1 that specifies the values
68 c
           of the derivative of the solution with respect to x at x = a.
69 c
           when abdend = 3 or 4,
70 c
71 c
                bda(j) = (d/dx)u(a, y(j)), j = 1, 2, ..., n+1
72 c
73 c
           when abdend has any other value, bda is a dummy variable.
74 c
75 c
         bdb
76 c
           a one-dimensional array of length n+1 that specifies the values
77 c
           of the derivative of the solution with respect to x at x = b.
78 c
           when abdend = 2 or 3.
79 c
98 c
                bdb(j) = (d/dx)u(b,y(j)), j = 1,2,...,n+1
81 c
82 c
           when abdond has any other value bdb is a dummy variable.
83 c
84 c
85 c
           on n+1 disensional array containing the y grid,
26 c
           y(n+1) must be greater than y(1) the boundaries of the grid are:
87 c
           c=u(1) to d=u(n+1).
88 c
89 c
98 c
            the number of panels into which the interval (c,d) is
91 c
           subdivided. hence, there will be n+1 grid points in the
92 c
           u-direction given by y(j) for j = 1,2,...,n+1
93 c
            if nbdcnd = 0 then n sust be equal to 2**k.
94 c
            if nbdcnd = 1 then n must be equal to 200k.
95 c
            if nbdcnd = 2 then n must be equal to 2^{n+k}-1.
96 c
            If modernd = 3 then n sust be equal to 200k-2.
97 c
            if nbdcnd = 4 then n must be equal to 2^{n+k-1}.
98 c
            the operational count of the solver is anlog2n so make n<m for the
99 c
            best efficiency.
100 c
101 c
         nbdend
102 c
            indicates the type of boundary conditions at y = c and y = d.
103 c
            = 8 if the solution is periodic in y, i.e., u(1,1) = u(1,n+1).
184 c
185 c
                if the solution is specified at y = c and y = d.
186 c
            = 2 if the solution is specified at y = c and the derivative of
107 c
                 the solution with respect to y is specified at y = d.
108 c
            3 if the derivative of the solution with respect to y is
189 c
                 specified at y = c and y = d.
            = 4 if the derivative of the solution with respect to y is
110 c
111 c
                 specified at y = c and the solution is specified at y = d.
112 c
113 c
          bdc
```

a one-dimensional array of length n+1 that specifies the values of the derivative of the solution with respect to y at y=c, when nbdcnd=3 or 4,

bde(i) = (d/dy)u(x(i),e), i = 1,2,...,n+1

when abdend has any other value, bdc is a dummy variable.

bdd

114 c

115 c

116 c

117 c

119 c 128 c

121 c 122 c

123 c

124 c

125 c

126 c 127 c

128 c 129 c

130 c 131 c

132 c

133 c

134 c

135 c 136 c 137 c

138 c

139 c 140 c 141 c

142 c 143 c

144 c

164 c

165 c 166 c

167 c 168 c

160 c

178 c

a one-dimensional array of length n+1 that specifies the values of the derivative of the solution with respect to y at y=d, when abdend =2 or 3,

$$bdd(i) = (d/dy)u(x(i),d), i = 1,2,...,m+1...$$

when abdend has any other value, bdd is a dummy variable.

e labda

the constant lambda in the helmholtz equation. If lambda .gt. 8, a solution may not exist. however, possol will attempt to find a solution.

f

a two-dimensional array which specifies the values of the right side of the helmholtz equation and boundary values (if any). for $i=2,3,\ldots,n$ and $j=2,3,\ldots,n$

$$f(i,j) = f(x(i),y(j)).$$

on the boundaries f is defined by

mbdend	f(1,j)	f(m+1,j)	
0	f(a,u(i))	f(a,y(j))	
1			
			j = 1, 2,, n+1
	f(a,u(i))		
4	f(a.u(1))	u(b,u(1))	
nbdend	f(1.1)	f(i.n+1)	
6	f(x(i),c)	f(x(i),c)	
			$i = 1, 2, \ldots, n+1$
4			
		· · , _ ·	
	## Page 1	### ##################################	### ##################################

f must be dimensioned at least (m+1)*(n+1).

note

if the table calls for both the solution u and the right side f at a corner then the solution sust be specified.

idinf

```
172 c
            the row (or first) dimension of the array f as it appears in the
173 c
           program calling pasent. this parameter is used to specify the
174 c
           variable dimension of f. idimf must be at least a+1
175 c
176 c
177 c
           a one-dimensional array that must be provided by the user for
178 c
           work space. the length of w aust be at least:
179 c
            if nbdcnd=0 2nlog2(n)+n+2+aax(4n,6a)+3(n+1)+3+(a+1)
199 c
            if nbdcnd>8 2(n+1)(log2(n+1)-1)+2+max(2n,6m)+3(n+1)+3*(m+1)
181 c
182 c
183 c
          *******
                                                . . . . . . . . . .
                                  on output
184 c
185 c
186 c
            contains the solution u(i,j) of the finite difference
187 c
            approximation for the grid point (x(i),y(j)), i = 1,2,...,n+1,
188 c
            j = 1, 2, ..., n+1
189 c
198 c
          pertrb
191 c
            if a combination of periodic or derivative boundary conditions
192 c
            is specified for a poisson equation (lambda = 0), a solution may
193 c
            not exist. pertrb is a constant, calculated and subtracted from
194 c
            f, which ensures that a solution exists. pascrt then computes
195 e
            this solution, which is a least squares solution to the original
196 c
            approximation, this solution is not unique and is unnormalized.
            the value of pertrb should be small compared to the right side
197 c
198 c
            f. otherwise , a solution is obtained to an essentially
199 c
            different problem, this comparison should always be made to
200 c
            insure that a meaningful solution has been obtained.
281 c
292 c
          ierror
293 c
            an error flag that indicates invalid input parameters. except
284 c
            for numbers 8 and 6, a solution is not attempted.
285 c
286 c
            = 8 no error.
287 c
            = 1 a .ge. b.
298 c
            = 2 mbdend .1t. 8 or mbdend .gt. 4
289 c
            = 3 c .ge. d.
210 c
            = 5 nbdend .1t. 8 or nbdend .gt. 4
211 c
            = 6 | lambda .gt. 9
212 c
            = 7 idinf .lt. m+1
213 c
            = 8 or 14 m .it. 5 (from biktri)
214 c
            = 9 or 15 n not in proper form for mbdend = 1,2,3,4 (from biktri)
215 c
            = 10 or 16 n not in proper form for mbdend = 8 (from biktri)
216 c
            = 11 or 17 blktri failed while computing results that depend on the
217 c
               coefficient arrays w(an1),w(bn1),w(cn1) check these arrays.
218 c
            = 12 or 18 idinf .lt. nunk (from blktri)
219 c
            > 13 error is error 6 pplus errors 8 to 12.
220 c
221 c
            since this is the only means of indicating a possibly incorrect
222 c
           call to possol, the user should test ierror after the call.
223 c
224 c
            contains interesdiate values that sust not be destroyed if
225 c
            percent will be called again with intl = 1 .
226 c
227 c
228 c
229
          disension
                          f(idimf,1)
```

```
,bdb(1)
230
          disension
                          bda(1)
                                                  ,bdc(1)
                                                               ,bdd(1)
231
                          w(1), x(1), y(1)
232
          integer ani,bni,cni,ani,bni,cni,wi
233 c
234 c
          check for invalid parameters.
235 c
236
          pertrb=0
237
          ierror = 8
238
          if (x(1),ge.x(n+1)) ierror = 1
230
          If (abdend.lt.8.or. abdend.gt.4) ierror = 2
248
          if (y(1),ge.y(n+1)) lerror = 3
241
          if (nbdend.lt.8 .or. nbdend.gt.4) lerror = 5
242
          if (idinf .1t. n+1) ierror = 7
243
          if (ierror .ne. 8) return
244 c
245
          no1 = n+1
246
          mp1 = m+1
247 c
248 c set indicies into the warray for an,bn,cn,am,bm,cm and w for biktri
249 c these are indicies to the first element of the arrays.
259
          ani=i
251
          bn1=an1+no1
252
          cn1=bn1+no1
253
          cmi=cni+npi
254
          bai=cai+aoi
255
          cal=bal+api
256
          wi=cmi+moi
257 c
258
          no = nbdcnd+1
259
          ap = abdend+1
268 c
261 c set start and stop limits for y
262
          goto (168, 161, 162, 163, 164), np
263 188 nstart=1
264
          ns top-n
265
          noo=8
266
          goto 185
267
     101 nstart=2
268
          nstop=n
269
          npp=1
270
          goto 185
271
     102 nstart=2
272
          nstop-np1
273
          npp=1
274
          goto 185
     183 nstart=1
275
276
          nstop=no1
277
          npp=1
278
          goto 165
     184
279
          nstart=1
299
          nstop=n
281
          npp=1
282 185 nunk=nstap-nstart+1
283 c
284 c set start and stop limits for x
295
          goto (110,111,112,113,114),mp
296 110 mstart=1
287
          ms top-m
```

```
288
          арр-8
289
          goto 115
    111 astart=2
298
291
          us top-a
292
          200-1
293
          goto 115
    112 mstart=2
294
295
          astop-apl
296
          app=1
297
          goto 115
298 113 mstart=1
299
          estop-ep1
300
          1=qq#
301
          goto 115
382 114 mstart=1
383
          as top=a
          200=1
385 115 munk=astop-astort+1
306 c
387 c filiona,ba,ca
308
          do 120 i=2,m
380
          deltoop=x(i+1)-x(i)
310
          deltom=x(i)-x(i-1)
311
          del tax=8.5*(del taxx+del taxx)
          w(cm1+i-1 )=1./(del tox+del toxm)
312
313
          w(ba1+i-1 >=-2./(del toxo#del toxo >+elabdo
314
          w(cal+i-1)=1./(deltax*deltaxa)
315 128 continue
315 c
317 c do boundaries at a
318
          goto (130,131,131,133,133),ap
319 c periodic
328 138 deltoxo=x(2)-x(1)
321
          del texa=x(ap1 >-x(a)
322
          del tax=8.5*(del taxa+del taxa)
          #(cm1 )=1./(del tox*del toxa)
323
324
          s(ba1 >=-2. /(del toop+del toom >+eInbda
325
          e(cal )=1./(del tox*del toxo)
326
          goto 135
327 c specified
328 131 do 132 j=nstart,nstap
329 132 f(2,j)=f(2,j)-f(1,j)=(cm1+1)
330
          w(am1+1 >=0
331
          goto 135
332 c derivative
333 133 deltasp=x(2)-x(1)
334
          del toperdel top
335
          del tax=del taxp
336
          w(an1 >=0
337
          w(ba1 >=-2./(del taxa>+eInbda
338
          w(cm1)=2./(deltax*deltaxp)
339
          do 134 jenstart, nstop
348 134 f(1,j)=f(1,j)+bda(j)*deltaxp**(cn1)
341 135 continue
342 c
343 c. do boundaries at b
344
           goto (145,141,143,143,141) ,mp
345 c specified
```

```
346 141 do 142 j=nstart,nstap
347 142 f(m,j)=f(m,j)-f(mp1,j)*w(cm1+m-1)
348
          w(cm1+m-1 >=0
349
          goto 145
358 c derivative
351 143 deltoxe=x(epi)-x(e)
352
          de l'toposde l'topo
353
          del taxadel taxa
          w(cm1+m)=2./(deitox+deitoxm)
354
355
          w(ba1+a)=-2./(del taxp*del taxa >+elabda
356
          w(ca1+a)=0
357 do 144 j=nstart,nstop
358 144 f(api,j)=f(api,j)-bdb(j)*deltaxa***(ami+m)
359 145 continue
368 c
361 c fillom,bn,cn
362
          do 158 j=2,n
363
          deltaup=u(j+1)-u(j)
364
          deltam=u(i)-u(i-1)
365
          del tau=0.5*(del taup+del taux)
366
          w(an1+j-1 )=1 . /(del tay#del tays)
367
          w(bn1+j-1)=-2./(del taup+del taup)
368
          w(cn1+j-1)=1./(deltay*deltayp)
369 158 continue
378 c
371 c do boundaries at c
372
          goto (160, 161, 161, 163, 163), np
373 c periodic
374 169 deltaup=u(2)-u(1)
375
          del taumu(no1 >-u(n)
376
          del tau=8.5*(del taup+del taux)
377
          w(ani >= 1 . / (de | tay+de | tays )
378
          w(bn1 )=-2. /(del taup*del taup)
          w(cn1 )=1 . /(del tay#del tayp)
379
388
          goto 165
381 c specified
382 161 do 162 i=mstart,mstop
383 162 f(i,2)=f(i,2)-f(i,1)*w(an1+1)
384
          w(an1+1 >=0
385
          acto 165
386 c derivative
387 163 deltaup=u(2)-u(1)
398
          de l'tayende l'taye
389
          del tayedel tayo
300
          e(ani >−8
          w(bn1 >=-2./(del taup*del taue)
391
392
          w(cn1 )=2./(del tay+del tayp)
          do 164 i=mstart,mstop
395 165 continue
396 c
397 c do boundaries at d
398
          goto (175,171,173,173,171) ,np
399 c specified
400 171 do 172 i≃astart,astop
401 172 f(i,n)=f(i,n)-f(i,np1)***(cn1+n-1)
482
          w(cn1+n-1)=8
483
          go to 175
```

```
484 c derivative
485 173 deltayary(np1 >-y(n)
485
          del tapedel tape
487
          del tayadel taya
488
          w(an1+n)=2./(deltau+deltaun)
          w(bn1+n)=-2./(del tayp+del taya)
489
418
          v(cn1+n)=0
          do 174 imastant, astop
411
412 174 f(i,np1)=f(i,np1)-bdd(i)*deltayp*e(an1+n)
413 175 continue
          if (eimbda) 252,248,239
414
      239 Jerror = 6
415
416
          go to 252
417 c
418 c
          for singular problems must adjust data to insure that a solution
419 c
          will exist.
428 c
421
      240 if ((nbdend.eq.8 .or. nbdend.eq.3) .and.
422
             (abdend.eq.8 .or. abdend.eq.3)) ,252
423
          msp1 = mstart+1
424
          mstmi = mstop-1
425 c
426
          s1 = 8.
427
          ht1=0
428
          do 247 j=nstart,nstop
429 c
438 c sum up the interior points
431
          s = 8.
          ht=8
432
433
          do 242 i=asp1.asta1
434
          h=x(i+1)-x(i-1)
          s = s+f(i,j)
435
          ht=ht+h
436
437
      242 continue
438 c
439 c add the points at xain and xaax
448 c
441 c abdend=8
442
          h1=x(2)-x(1)+x(a+1)-x(a)
443
          ha=x(a+1)-x(a-1)
444
          if (abdand.eq.0) 243,
445 c
446 c mbdend=3
          h1=x(2)-x(1)
447
448
          ha=x(a+1 )-x(a)
449 243 s=s+f(astart,j)*h1+f(astop,j)*ha
458
          ht=ht+h1+hm
451 c
452 c
453 c check for values along the y boundary
454
           if (j.gt.nstart) 244,
455
          h=u(2)-u(1)
456
           if (nbdcnd.eq.8) h=h+y(n+1)-y(n)
457
          goto 246
458 c
459 244 if (j.lt.nstop) 245,
460
          h=u(n+1)-u(n)
461
           if (nbdcnd.eq.8) h=y(n+1)=y(n-1)
```

```
462
          goto 245
463 c
464 245
          h=y(j+1)-y(j-1)
465 246 sl=s1+s4h
466
          わた1=わた1+わため
467 247
          continue
468
          pertrb=s1/ht1
          do 250 jenstart, nstop
469
          do 249 imstart, astop
470
471
          f(i,j) = f(i,j)-pertrb
      249 continue
472
473
      258 continue
474 c
475 c initialize w if required
476 252 if (intl.eq.1) 253,
477 c
478
          call biktri (0,
479
                    npp, nunk, w(an1+nstart-1), w(bn1+nstart-1), w(cn1+nstart-1),
         X
488
                    app, munk, w(cm1+mstcrt-1), w(be1+mstcrt-1), w(cm1+mstcrt-1),
         ×
481
         x
                    idiaf, f(astart, nstart), ierr1, w(w1))
482 c
483 c check for an error during the initialization
484
          if (ierr1.ne.0) 254,
485 c
486 c solve the problem
487 253 call biktri (1,
488
                    npp, nunk, w(an1+nstart-1), w(bn1+nstart-1), w(cn1+nstart-1),
         ×
                    app, sunk, #(cm1+astcrt-1), #(ba1+astcrt-1), #(cm1+astcrt-1),
489
         ×
400
                    idiaf, f(astart, astart), ierr1, s(s1))
         X
491 c
492 c check for blktri errors
493 254 if (lerr1.eq.8) 256,
494
           ierror=lerr1+7+lerror
495
          return
496 256 continue
497 c
498 c
           fill in identical values when have periodic boundary conditions.
499 c
500
           if (nbdend .ne. 8) go to 268
591
           do 259 i=astart,astop
              f(i,np1) = f(i,1)
562
583
      259 continue
<del>594</del>
      260 if (abdend .ne. 0) go to 262
585
           do 261 |=nstart,nstop
506
              f(mp1,j) = f(1,j)
507
      261 continue
588
           if (nbdend .eq. 8) f(np1,np1) = f(1,np1)
500
      262 continue
516
           return
511 c
           uses subr biktri
512
           end
513 c
```

APPENDIX 2

This is a test problem for the POSSOL routine. It puts a nonuniform grid on a rectangular region with derivative boundary conditions at y=c and y=d, and fixed boundary conditions at x=a and x=b. The correct solution for the region is:

```
U = 0.5 + \sin(2\pi \pi x/(b-a)) \sin(2\pi \pi y/(d-c))
```

```
1 0 *****
2 c
3 c *
        program postst
4 c
5 c * w. j. orvis | 1 m | 4/15/85
6 c
7 c
        this is a test problem for the possols routine
8 c
9 c
10
         dimension x(188), y(188), f(188, 188), w(1888)
        disension bda(188),bdb(188),bdc(188),bdd(188)
11
12
        call dropfile(8)
13
         call create(2, "posout", 2,-1)
14
         call setclose(2,1,1,8)
15
         pi=3.141592654
16 c
17 c a+1 is the arbitrary number of x grid points
18 c for the best efficiency, set up the problem with m > n
19
         a=98
20 c
21 c set fixed boundary conditions at x=a and x=b
22
         abdend=1
23 c
24 c put in a non-linear x-grid
25
         xien=28.
26
         do 100 i=1,a+1
27
         x(i)=xlen*sin(pi*float(i-1)/(2.*float(a)))
28 198 continue
29 c
38 c n+1 is the number of y grids, its value is restricted by mbdcnd
31
         n=62
32 c
33 c set derivative boundary conditions at use and used
         nbdend=3
34
35 c
36 c put in a non-linear y-grid
         ylen=15.
37
38
         do 200 j=1,n+1
         y(j)=ylen+sin(pi+float(j-1)/(2.+float(n)))
30
49 299 continue
41 c
42 c some constants
43
         pix=2.*pi/x(a+1)
```

```
44
         piy=2.*pi/y(n+1)
45 c
46 c set lambda=8 for this problem
47
         e labda=8
48 c
49 c set idial equal to the first dimension of f in the dimension
50 c statement above.
51
         idiaf=100
52 c
53 c set f
54
         do 300 i=1,a+1
55
         do 300 j=1,e+1
56
         f(i,j)=-(pix++2+piy++2)+sin(piy+y(j))+sin(pix+x(i))
57 300 continue
58 c
59 c put in the values of the derivatives at unc and und
68
         do 320 i=1,m+1
61
         bde(i)=piy*sin(pix*x(i))
62
         bdd(i)=bdc(i)
63 328 continue
64 c
65 c put the value of the fixed boundaries at x=a and x=b
         do 340 i=1.n+1
67
         f(1,j)=5.
68
         f(m+1,j)=5.
69 348 continue
78 c
71 c solve the problem
         call possal (0,x,m,mbdend,bda,bdb,y,n,mbdend,bdc,
72
73
                            bdd,elabda,f,idiaf,pertrb,ierror,w>
        1
74 c
75 c ierror should be tested for problems with the solution
76
         write (2,588) jerror
77 500 foreat("ierror after solution = ", i5)
78 c
79 c for singular problems, test pertrb to be sure that
80 c it is small compared to f.
81
         write (2,518) pertrb
82 510 format("partrb = ",e12.5)
83 c
84 c print out the results
         do 600 i=1,m+1
85
86
         write (2,558) (f(i,j),j=1,n+1)
87 550 format (4e12.5)
88 600 continue
89 c
98 c print out the difference between the solution and the correct value
91
         write (2,658)
92 650 format("error values")
93
         do 900 i=1,m+1
         write (2,550) ((f(i,j)-5.-sin(pix*x(i))*sin(piy*y(j))),j=1,n+1)
94
95 888
         continue
96 c
97
         call exit(8)
98
         end
```

APPENDIX 3

This is the same problem as that solved in Appendix 2, except that the boundary conditions are now mixed along the side x-a. The boundary conditions are fixed from grid points 1 through 10 and are derivative from grid points 11 through 63.

```
1 c ++++
2 c *
3 c *
        program capatx
4 c *
5 c * w. j. orvis | | | 1/15/85
вc
7 c
     * this is a test problem for the possols routine
8 c
        and the capacitance matric method, the troublesome boundary is
9 c
        at x=a.
10 c
11 c ****
        dimension x(198),y(198),f(188,198),w(1889),c(28,28),ip(29)
12
13
        dimension bda(189),bdb(188),bdc(189),bdd(189),beta(28)
14
        call dropfile(8)
        call create(2,"capout",2,-1)
15
        call setclose(2,1,1,8)
16
17
        pl=3.141592654
18 c
19 c a+1 is the arbitrary number of x grid points
28 c for the best efficiency, set up the problem with m > n
21
         m=98
22 c
23 c n+1 is the number of y grids, its value is restricted by modered
24
        n=62
25 c
26 c put in a non-linear x-grid
27
         xler=20.
         do 100 i=1,a+1
28
         x(i)=x|en*sin(pi*float(i-1)/(2.*float(n)))
29
38 188 continue
31 c
32 c put in a non-linear y-grid
         yien=15.
33
34
         do 200 j=1,n+1
35
         y(j)=ylen*sin(pi*float(j-1)/(2.*float(n)))
36 200 continue
37 c
39 c some constants
30
         pix=2.*pi/x(a+1)
48
         pig=2.*pi/g(n+1)
41 C
42 c set lambda=8 for this problem
43
         e labdo=0
44 c
45 c set idinf equal to the first dimension of f in the dimension
46 c statement above.
47
         idinf=100
48 c
```

```
49 c set fixed be at x=b and derivative at x=a
59
         abdend=4
51 c
52 c set derivative boundary conditions at yet and yed
53
         nbdcnd=3
54 c
55 c set all of the derivatives to zero for the calculation of c
56
         do 248 j=1,n+1
57
         bda(1 >=0
58 248
        continue
59 c
68
         do 220 i=1,m+1
         bde(i >=0
61
62
         bdd(i >=0
63 220 continue
64 c
65 c loop over the p points with fixed be at x=1
66
         ioi=1
         jpf=10
67
68
         do 510 k=jpi,jpf
69 c
78 c zero all but the k th element of f along i=1
         do 300 i=1,m+1
71
         do 300 j=1,n+1
72
73
         f(i,j)=0
74 300 continue
ਨ
         f(1,k)=1.
76 c
77 c solve b = a(k)
78
         call possol (0,x,m,mbdend,bda,bdb,y,n,nbdend,bdc,
79
                            bdd,elabda,f,idiaf,pertrb,ierror,w>
88 c
81 c
      lerror should be tested for problems with the solution
         write (2,588) ierror
82
93 588 format("ierror after solution = ", i5)
84 c
85 c store a column of c
86
         do 505 j=jpi,jpf
87
         c(j-jpi+1,k)=f(1,j)
88 585 continue
89 510 continue
99 c
91 c lu decompose c
         call dec(jpf-jpi+1,28,c,ip,ier)
92
93
         write (2,515) ier
94 515 format("ier from dec = ", i5)
95 c
96 c begin the main solution sequence
97 c
98 c create v in f
99
         do 529 i=1,a+1
100
         do 528 j=1,n+1
181
         f(i,j)=-(pix++2+piu++2)+sin(pix+x(i))+sin(piu+u(j))
182 529 continue
103 c
184 c put in the boundary conditions
165 c don't forget the fixed values at x=a
186 c set the derivative values in this area to 0
```

```
187
          do 525 j=1,n+1
188
          f(m+1, j )=5.
189
          bda(j)=pix+sin(piu+u(j))
118
    525 continue
          do 527 j=jpi,jpf
111
          bda(j >=0
112
    527 f(1,j)≠5.
113
          do 528 i=1,a+1
114
115
          bdc(i)=piy*sin(pix*x(i))
          bdd(i >=bdc(i >
116
117 528 continue
118 c
119 c soive boutilds = v
128
          call possol (0,x,a,abdend,bda,bdb,y,n,nbdend,bdc,
                             bdd, elabda, f, idiaf, pertrb, ierror, w)
121
122
          write (2,539) ierror
123 538 format("ierror from posso! = ",15)
124 c
125 c load beta with the rhs v-atu
          do 535 k=jpi,jgf
126
127
          beta(k-jpi+1)=5.-f(1,k)
128 535 continue
129 c
138 c solve for beta
131
          call sol(jpf-jpi+1,20,c,beta,ip)
132 c
133 c reload f with the modified v+beta*e
134
          do 548 i=1, m+1
135
          do 548 j=1,n+1
          f(i,j)=-(pix++2+piy++2)+sin(pix+x(i))+sin(piy+u(j))
136
137 546 continue
139 c
139 c put in the fixed boundary at x=b
148
          do 542 j=1,n+1
141
          f(n+1,j)=5.
142 542 continue
143 c
144 c put in the fixed boundary at x=a and add the beta value
145
          do 543 j≈jpi,jpf
146 543 f(1,j)=5.+beta(j-jpi+1)
147 c
148 c solve b*u=v+beta*e to get the final u
          call possol (8,x,s,sbdend,bda,bdb,y,n,nbdend,bdc,
149
150
                             bdd,elabda, f, idiaf, pertrb, ierror, w)
         1
          write (2,545) ierror
151
152 545 format("ierror from possol = ",i5)
153 c
154 c print out the results
155
          do 600 (=1,m+1
          write (2,558) (f(i,j),j=1,n+1)
156
157 550 forest (4e12.5)
158 600 continue
159 c
168 c print out the difference between the solution and the correct value
           write (2,658)
161
162 650
          format("error values")
 163
           do 999 i=1,m+1
 164
           write (2,558) ((f(i,j)-5.*sin(pix*x(i))*sin(piy*y(j))),j=1,n+1)
```

165 888 continue 166 c 167 call exit(8) 168 end